Worksheet on mechanics graphs

A parachutist P jumps out of a helicopter hovering at rest 3.0 km above the Earth's surface. Three graphs G1, G2 and G3 are available for the motion of P.

G1: The variation with time of the speed of P.

G2: The variation with time of the height of P from the ground before the parachute was opened.

G3: The variation with time of the drag force on P before the parachute was opened. Use these graphs to answer the following questions:

(a)

- (i) What is the initial acceleration of P?
- (ii) When was the parachute opened?
- (iii) What is the average speed from the jump to the instant the parachute was opened?

(b)

- (i) What is the average acceleration experienced by P while the parachute was opening?
- (ii) What is the mass of P?
- (iii) What is the average force exerted on P by the parachute harness?
- (iv) The drag force is given by $F = kv^2$. Determine k.
- (c) During the fall, P assumes two terminal speeds. Suggest why they are so different in magnitude.
- (d) Draw a graph of acceleration vs time until just before the parachute is opened.
- (e) Why can g be considered constant while P is falling?
- (f) What energy has been converted to thermal energy until just before the parachute was opened?

and

- (g) The helicopter has blades of length 15 m and a mass of 5200 kg. The density of air is 1.2 kg m⁻³. The blades push air downward at speed v.
 - (i) Explain how this allows the helicopter to hover stationary in air.
 - (ii) Determine v.
 - (iii) By what factor should v be increased so that the helicopter accelerates upwards with acceleration g?

Answers

(a)

- (i) g, 9.8 m s⁻²
- (ii) t = 30 s.
- (iii) Distance fallen is 3000 1625 = 1375 m in a time of 30 s and so average speed is 46 m s⁻¹.

(b)

- (i) Velocity changed from 52 m s⁻¹ to 6.0 m s⁻¹ in a time of 5.0 s so the average acceleration is –9.2 m s⁻².
- (ii) When the drag force is 680 N it is equal to the weight. Hence $m = \frac{680}{9.8} = 69$ kg.
- (iii) $mg T = ma \Rightarrow T = mg ma = 680 69 \times (-9.2) = 1300 \text{ N}$

$$T - mg = ma \Rightarrow T = mg + ma = 680 + 69 \times 9.2 = 1300 \text{ N}$$
.

- (iv) $k = \frac{680}{52^2} = 0.25 \text{ kg m}^{-1}$.
- (c) Because the area providing the drag force is very different. It is the body of P for the large terminal speed and the much larger area of the parachute for the second lower terminal speed.

(d)

- (e) $g = \frac{GM}{(R+h)^2}$ and the height h is negligible compared to the Earth radius R.
- (f) Loss of potential energy at t = 30 s is $mgh = 69 \times 9.8 \times 1375 = 9.35 \times 10^5$ J. Kinetic energy at t = 30 s is $\frac{1}{2}mv^2 = \frac{1}{2} \times 69 \times 52^2 = 9.33 \times 10^4$ J. Hence energy transferred to thermal energy is $9.35 \times 10^5 9.33 \times 10^4 = 8.4 \times 10^5$ J.

IB Physics: K.A. Tsokos

(g)

- (i) The blades exert a force on the air pushing it down, so the air exerts a force of the same magnitude in the opposite direction on the blades by Newton's third law.
- (ii) The momentum of the air pushed down in time Δt is $\Delta p = \Delta m \, v = (\rho \pi R^2 v \Delta t) v = \rho \pi R^2 v^2 \Delta t \text{ . Hence the force is}$ $F = \frac{\Delta p}{\Delta t} = \frac{\rho \pi R^2 v^2 \Delta t}{\Delta t} = \rho \pi R^2 v^2 \text{ . This equals the weight and so } \rho \pi R^2 v^2 = mg$ and thus $v = \sqrt{\frac{mg}{\rho \pi R^2}}$ giving $v = 7.8 \text{ m s}^{-1}$.
- (iii) The upward force must equal twice the weight. Hence $\rho\pi R^2 v_{\rm new}^2 = 2mg$. This means that $\rho\pi R^2 v_{\rm new}^2 = 2\rho\pi R^2 v^2$, i.e. $v_{\rm new}^2 = 2v^2 \Rightarrow v_{\rm new} = v\sqrt{2}$.